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Abstract

Background: The use of structural alerts to de-prioritize compounds with undesirable features as drug candidates
has been gaining in popularity. Hundreds of molecular structural moieties have been proposed as structural alerts.
An emerging issue is that strict application of these alerts will result in a significant reduction of the chemistry space
for new drug discovery, as more than half of the oral drugs on the market match at least one of the alerts. To mitigate
this issue, we propose to apply a rigorous statistical analysis to derive/validate structural alerts before use.

Method: To derive human liver toxicity structural alerts, we retrieved all small-molecule entries from LiverTox, a U.S.
National Institutes of Health online resource for information on human liver injuries induced by prescription and
over-the-counter drugs and dietary supplements. We classified the compounds into hepatotoxic, nonhepatotoxic,
and possible hepatotoxic classes, and performed detailed statistical analyses to identify molecular structural fragments
highly enriched in the hepatotoxic class beyond random distribution as structural alerts for human liver injuries.

Results: We identified 12 molecular fragments present in multiple marketed drugs that one can consider as common
“drug-like” fragments, yet they are strongly associated with drug-induced human liver injuries. Thus, these fragments
may be considered as robust hepatotoxicity structural alerts suitable for use in drug discovery screening programs.

Conclusions: The use of structural alerts has contributed to the identification of many compounds with potential
toxicity issues in modern drug discovery. However, with a large number of structural alerts published to date without
proper validation, application of these alerts may restrict the chemistry space and prevent discovery of valuable drugs.
To mitigate this issue, we showed how to use statistical analyses to develop a small, robust, and broadly applicable set
of structural alerts.
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Background
Despite significant progress in the field of chemical toxi-
cology and drug safety assessment, accurate prediction
of the occurrence of adverse drug reactions (ADRs)
remains one of the major challenges in modern drug dis-
covery [1]. The consequences cannot be overestimated,
as surveys indicate that ADRs cost several billion dollars
a year [2] and constitute one of the top 10 causes of
death in the United States [3,4]. As the human liver
metabolizes more than 90% of all prescription drugs [5]

and is exposed to high concentrations of orally adminis-
tered drugs and their metabolites [6], drug-induced liver
injuries are the most frequently reported ADRs [7,8] and
the most common reason for drug withdrawal [9]. To
reduce the probability that drug candidates will have
unwanted toxicities, many molecular structural moieties
of high chemical reactivity, or those that can be trans-
formed into moieties of high chemical reactivity by
human enzymes (i.e., bioactivation), were proposed as
structural alerts [10-12]. However, there was no publica-
tion specifically dedicated to the development of struc-
tural alerts for mitigating the risk of drug-induced
human liver injuries until very recently [13]. On the
other hand, over two thousand structural alerts for
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flagging various undesirable features of drug candidates
have been assembled in the Online Chemical Database –
a web-based resource at https://ochem.eu/. The assump-
tion is that removing compounds with structural alerts
from bioactivity screening libraries and short lists of
drug candidates would reduce the risk of drug discovery
and development failures.
However, there is a growing concern that some struc-

tural alerts might be too stringent and that strictly ap-
plying them would severely limit the chemical diversity
needed to operate drug discovery programs. As pointed
out by Stepan et al., nearly half of all new small-
molecule drugs possess at least one structural alert, and
some alerts are also present in the top-selling drugs [14].
Indeed, our profiling (using the web tool at https://
ochem.eu/alerts/home.do) of 826 U.S. Food and Drug
Administration (FDA)-approved oral drugs retrieved
from DrugBank (http://www.drugbank.ca/) indicates that
514 (62.2%) of the drugs match reactive, unstable, or
toxic structural alerts, and 414 (50.1%) of them match at
least one of the idiosyncratic toxicity structural alerts of
Kalgutkar et al. [11] If these alerts were strictly enforced,
we would not have half of the oral drugs currently on
the U.S. market! To prevent this, it is to crucial to de-
velop structural alerts that are strongly associated with
increased occurrences of chemical-induced toxicity in
the therapeutic dose range, not merely those that may
participate in a relevant bioactivation pathway but with-
out clinical evidence of resulting human injuries, nor
those that are only known to cause injuries in an animal
model. The latter consideration stems from toxic end-
points being dose-dependent [14,15], and animal models
tend to use doses higher than the equivalent human
doses.
To demonstrate a strong association between a struc-

tural alert and a chemical-induced toxicity, the structural
alert should occur significantly more in compounds
positive for the toxicity than in compounds negative for
the toxicity. Unfortunately, this is not always the case.
For instance, in a recent paper by Hewitt et al., 16 struc-
tural moieties were flagged as structural alerts for hu-
man hepatotoxicity [13]. However, one of the alerts
(alert 5 in the paper) is present in eight nonhepatotoxic
and three hepatotoxic drugs. In addition, other alerts
(alerts 1, 4, and 13) occur almost equally in the hepato-
toxic and nonhepatotoxic drugs [13]. In our opinion, a
strong association between a structural alert and a
chemical-induced toxicity should be established by stat-
istical analyses in order to provide a robust indication, as
opposed to a casual association.
There are several hurdles in deriving meaningful hu-

man hepatotoxicity structural alerts. Perhaps the largest
is the lack of a large and carefully curated human hep-
atotoxicity dataset. Information about idiosyncratic human

liver ADRs is chiefly accumulated via reports from pre-
scribing physicians after drugs received FDA approval.
These ADRs typically occur in a small subset of the patient
population and are not observed in relatively small, short-
term clinical trials. Data from such sources are noisy
because of reporting bias. For example, ADRs may be
over-reported for a new or “untrusted” drug and under-
reported for a “trusted” drug. In addition, many patients
take multiple drugs for treating different and usually unre-
lated conditions. A liver adverse event could be induced by
one of the drugs or by multiple drugs via synergistic drug-
drug interactions [16]. Thus, establishing a causative rela-
tionship between a liver adverse event and a specific drug
molecule is not trivial. Further complicating the matter is
the lack of an established threshold on the severity of a
liver adverse event for defining when a drug should be
classified as hepatotoxic. For example, an adverse drug
event may be under-reported by young and relatively
healthy patients who perceive it as minor, whereas the
same event might appear life-threatening to an older pa-
tient suffering from multiple health issues. To mitigate
these challenges, some studies consider drugs that induce
elevation of human liver enzymes as hepatotoxic. Other
studies consider compounds that induce liver injuries in
lab animals as hepatotoxic for humans. However, many
safe and efficacious drugs induce transient elevations of
human liver enzymes. The elevated levels may return to
normal with continued therapy or shortly after completion
of therapy, without apparent liver injury. Although animal
models are commonly used in pre-clinical research, there
are many examples of compounds that are safe in animal
models or efficacious in an animal disease model, but toxic
to a human or ineffective for treating a human disease.
Recently, the National Library of Medicine of the U.S.

National Institutes of Health launched LiverTox, a data-
base of ~700 medications associated with human liver
injuries [17]. It provides evidence-based information re-
lated to liver injuries associated with prescription and
over-the-counter drugs, herbal remedies, and dietary
supplements. Carefully curated and reviewed by experts
in multiple disciplines, the database constitutes a valu-
able resource for developing and validating structural
alerts for drug-induced human liver injuries. Toward
this goal, we retrieved from LiverTox all small-molecule
entries with molecular structures. We augmented the
dataset with drugs withdrawn from market and drugs
with black-box warning labels due to acute human liver
injuries. We used the expanded dataset to identify struc-
tural alerts that are present mostly in liver-toxic drugs, and
their presence is unlikely due to random distribution.

Results and discussion
Table 1 shows the hepatotoxicity structural alerts de-
rived in this study presented in the form of Smiles
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ARbitrary Target Specification (SMARTS) notations [18].
Also shown in Table 1 are the number of compounds
that matched a structural alert in the three hepatotox-
icity classes and the p-values calculated by the method
described in the Methods. Figure 1 presents the struc-
tural moieties represented by the SMARTS notations,
and Table 2 gives names of the drugs matched to these
structural moieties. While most drugs in Table 2 match
one of the structural alerts, a very small number of
drugs match 2 or 3 different alerts. Details on these
drugs and the structural alerts they match can be found

in the Additional file 1 that is freely downloadable from
the journal web site.
Alert 1 is a fused tricyclic saturated hydrocarbon moi-

ety that is shared by a class of steroids known to cause
acute human liver injuries with prolonged use or over-
dose. In the expanded LiverTox dataset, 19 drugs with
this moiety were found in the hepatotoxic class, 3 in the
nonhepatotoxic class, and 2 in the possible hepatotoxic
class. A recent study on the development of human liver
toxicity structural alerts defined three individual and lar-
ger structural moieties as alerts for estrogen steroids,

Table 1 Structural alerts for human liver toxicity and their frequency of occurrence in each of the drug classes

Alert SMARTSa Hepatotoxicb (178) Possible hepatotoxicc (243) Nonhepatotoxicd (186) p-valuee

1 C12CCCCC1C3C(CCC3)CC2 19 2 3 <0.0001

2 NN 14 13 0 <0.0001

3 a[C!R]C(=O)[OH] 11 7 0 0.0011

4 [#6]S(=O)(=O)N[#6] 18 16 3 0.0058

5 c1ccccc1[NH2] 7 4 0 0.013

6 O = [S;X3] 5 0 1 0.014

7 [S;X2&!R] 8 14 1 0.016

8 a[C!R](=O)a 10 4 1 0.029

9 C[F,Cl,Br,I] 21 23 7 0.039

10 C1CC1N 4 4 0 0.11

11 [O]c1ccc([N])cc1 5 4 1 0.25

12 N1c2ccccc2Sc2ccccc12 5 2 1 0.25
aSMiles ARbitrary Target Specification (SMARTS), a language for describing molecular patterns from Daylight Information Systems, Inc. (ref. [18]). bDrugs known to
cause clinically apparent acute human liver injuries; the total number is given in parentheses. cDrugs that may have been linked to some reports of human liver
injuries, but have not been convincingly established as causing these injuries in their therapeutic doses, or have not been widely used for an extended period of
time and, therefore, lack sufficient clinical data for a reliable classification. The total number of these drugs is given in parentheses. dDrugs that have been on the
market for an extended period of time and are in widespread use, but have not been convincingly associated with clinically apparent acute human liver injuries.
The total number of these drugs is given in parentheses. eProbability for a structural alert to have a specific occurrence pattern across the three drug classes
by chance.
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Figure 1 Molecular structural moieties defined by the SMARTS in Table 1. Lowercase element symbols represent aromatic atoms of the
element; the letter “a” matches any aromatic atom. Elements in square brackets match any of the elements in a molecule.
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Table 2 Names and hepatotoxicity classesa of the drugs that matched the structural alerts defined in Table 1

Drug name Class Drug name Class Drug name Class Drug name Class

Alert 1 Ketoprofen 0 Alert 7 Efavirenz 1

Triamcinolone 1 Naproxen 0 Ebrotidine 1 Nilutamide 0

Prednisone 1 Tolmetin 0 Niperotidine 1 Fluoxetine 0

Prednisolone 1 Alert 4 Penicillamine 1 Fluvoxamine 0

Methylprednisolone 1 Zafirlukast 1 Nelfinavir 1 Sitagliptin 0

Hydrocortisone 1 Piroxicam 1 Imipenem 1 Flucytosine 0

Dexamethasone 1 Tipranavir 1 Meropenem 1 Fluorouracil 0

Cortisone 1 Delavirdine 1 Disulfiram 1 Nilotinib 0

Betamethasone 1 Glyburide 1 Azathioprine 1 Fluphenazine 0

Testosterone 1 Glipizide 1 Spironolactone 0 Celecoxib 0

Stanozolol 1 Glimepiride 1 Clindamycin 0 Clindamycin 0

Oxymetholone 1 Gliclazide 1 Ceftriaxone 0 Riluzole 0

Oxandrolone 1 Fosamprenavir 1 Ertapenem 0 Maraviroc 0

Norethandrolone 1 Amprenavir 1 Ranitidine 0 Chlorambucil 0

Nandrolone 1 Tolbutamide 1 Nizatidine 0 Cyclophosphamide 0

Methyltestosterone 1 Tolazamide 1 Famotidine 0 Lomustine 0

Methenolone 1 Chlorpropamide 1 Cimetidine 0 Melphalan 0

Methandienone 1 Acetohexamide 1 Thioridazine 0 Bendroflumethiazide 0

Fluoxymesterone 1 Ebrotidine 1 Pergolide 0 Methyclothiazide 0

Danazol 1 Sudoxicam 1 Montelukast 0 Polythiazide 0

Exemestane 0 Sulfasalazine 1 Polythiazide 0 Silodosin 0

Spironolactone 0 Sulfadiazine 1 Albendazole 0 Desflurane 0

Dutasteride −1 Sulfamethoxazole 0 Captopril 0 Sevoflurane 0

Finasteride −1 Meloxicam 0 Cefazolin −1 Bicalutamide 0

Eplerenone −1 Sildenafil 0 Alert 8 Capecitabine −1

Alert 2 Darunavir 0 Bromfenac 1 Emtricitabine −1

Diclofenac 1 Sulfadoxine 0 Tienilic acid 1 Mechlorethamine −1

Pirprofen 1 Rosuvastatin 0 Zomepirac 1 Dutasteride −1

Lumiracoxib 1 Sotalol 0 Clometacin 1 Colestipol −1

Fenclozic acid 1 Chlorothiazide 0 Benziodarone 1 Quazepam −1

Fenclofenac 1 Polythiazide 0 Amiodarone 1 Chloral hydrate −1

Clometacin 1 Methyclothiazide 0 Benzbromarone 1 Alert 10

Zomepirac 1 Hydrochlorothiazide 0 Tolcapone 1 Nevirapine 1

Ibufenac 1 Bendroflumethiazide 0 Fenofibrate 1 Trovafloxacin 1

Bromfenac 1 Sumatriptan 0 Mebendazole 0 Abacavir sulfate 1

Benoxaprofen 1 Naratriptan 0 Indomethacin 0 Ciprofloxacin 1

Alclofenac 1 Almotriptan 0 Ketoprofen 0 Saxagliptin 0

Fexofenadine 0 Bosentan 0 Tolmetin 0 Tranylcypromine 0

Ticarcillin 0 Probenecid −1 Ketorolac −1 Gemifloxacin 0

Ibuprofen 0 Torsemide −1 Alert 9 Moxifloxacin 0

Indomethacin 0 Vardenafil −1 Leflunomide 1 Alert 11

Ketoprofen 0 Alert 5 Isoflurane 1 Amodiaquine 1

Naproxen 0 Sulfadiazine 1 Enflurane 1 Ketoconazole 1

Tolmetin 0 Bromfenac 1 Triamcinolone 1 Minocycline 1
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anabolic steroids, and glucocorticoid steroids [13]. Alert
1 is the maximum common substructure of the three
alerts proposed in reference 13.
Alert 2 matches hydrazines. Fourteen drugs with this

structural moiety were found in the hepatotoxic class, 13
in the possible hepatotoxic class, but zero in the nonhe-
patotoxic class. It has a p-value of less than 10−4, which
signifies a relatively strong association between liver-
related adverse events and this structural feature.
Alert 3, an arylacetic acid, is a high-profile hepatotoxic

structural alert, as there were 11 compounds with this
structural moiety in the hepatotoxic class, zero in the
nonhepatotoxic class, and 7 in the possible hepatotoxic
class. It should be noted that 10 of the 11 hepatotoxic
drugs having this structural moiety had been withdrawn
from the market due to ADRs, including severe and fatal
drug-induced acute human liver injuries. As we mention
in the Methods, most compounds in the possible hep-
atotoxic class were associated with a low number of liver
ADR reports, but the causative relationship between the
drugs and the reported liver ADRs have not been well
established. Considering that 10 out of the 11 drugs hav-
ing this structural moiety in the hepatotoxic class had
been withdrawn from market, the observed human liver
injuries associated with the 7 drugs in the possible hep-
atotoxic class have a high likelihood of being caused by
the drugs. It may be just a matter of time for sufficient
liver-injury reports to surface and for re-classification of
the drugs into the hepatotoxic class.
Alert 4 is a sulfonamide moiety known to be associ-

ated with drugs that may cause human liver injuries

[19]. This was corroborated by the expanded LiverTox
dataset, as there were 18 drugs with this moiety in the
hepatotoxic class, 15 in the possible hepatotoxic class,
and only 3 in the nonhepatotoxic class. The p-value for
the distribution of the compounds in the three hepato-
toxicity classes is only 8.3 × 10− 3, indicating that this
pattern is highly unlikely to occur by chance.
Many drugs with the sulfonamide group are safe and

efficacious when administered at a relatively low dose
and for a short duration. However, sulfonamides are
linked to cases of acute liver failure and ranked in the
top 10 causes of drug-induced, idiosyncratic fulminant
hepatic failure [13]. Thus, to reduce the risk of drug-
induced liver injuries, one should be aware of the hep-
atotoxicity liability associated with the sulfonamide
group and consider replacing the structural moiety when
feasible.
Alert 5 is the aniline moiety. Many compounds with

this structural moiety are known to be mutagenic [20].
In the expanded LiverTox dataset, 7 compounds with
this structural feature were found in the hepatotoxic
class, 4 in the possible hepatotoxic class, and zero in the
nonhepatotoxic class.
Alert 6 mainly occurs in a class of proton pump

inhibitor drugs. Five of these drugs were found in the
hepatotoxic class, and one in the nonhepatotoxic class.
Alert 7 is an acyclic bivalent sulfur moiety, a chemical

group known to have a relatively high reactivity. Eight
compounds with this structural moiety were found in
the hepatotoxic class, 14 in the possible hepatotoxic
class, and only 1 in the nonhepatotoxic class.

Table 2 Names and hepatotoxicity classesa of the drugs that matched the structural alerts defined in Table 1
(Continued)

Alert 3 Nomifensine 1 Dexamethasone 1 Sulfasalazine 1

Diclofenac 1 Amprenavir 1 Betamethasone 1 Posaconazole 1

Pirprofen 1 Fosamprenavir 1 Tipranavir 1 Acetaminophen 0

Lumiracoxib 1 Procainamide 1 Pantoprazole 1 Itraconazole 0

Fenclozic acid 1 Lenalidomide 1 Lansoprazole 1 Acebutolol 0

Fenclofenac 1 Sulfadoxine 0 Trifluoperazine 1 Lapatinib 0

Clometacin 1 Darunavir 0 Gemcitabine 1 Tigecycline −1

Zomepirac 1 Dapsone 0 Floxuridine 1 Alert 12

Ibufenac 1 Sulfamethoxazole 0 Mefloquine 1 Chlorpromazine 1

Bromfenac 1 Alert 6 Flecainide 1 Pipamazine 1

Benoxaprofen 1 Sulindac 1 Flutamide 1 Perphenazine 1

Alclofenac 1 Lansoprazole 1 Halothane 1 Prochlorperazine 1

Fexofenadine 0 Omeprazole 1 Fluoxymesterone 1 Trifluoperazine 1

Ticarcillin 0 Pantoprazole 1 Ifosfamide 1 Fluphenazine 0

Ibuprofen 0 Rabeprazole 1 Carmustine 1 Thioridazine 0

Indomethacin 0 Modafinil −1 Tolrestat 1 Promethazine −1
aExpanded LiverTox dataset compound classes: 1, hepatotoxic; −1, nonhepatotoxic ; 0, possible hepatotoxic.
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Alert 8 is an acyclic di-aryl ketone moiety. Ten com-
pounds with this structural moiety were found in the
hepatotoxic class, 1 in the nonhepatotoxic class, and 4
in the possible hepatotoxic class. Among the 10 drugs in
the hepatotoxic class with this structural moiety, 5 were
withdrawn from market due to severe and even fatal
human liver injuries. Thus, Alert 8 is another structural
moiety associated with an elevated liability of severe
acute human liver injuries.
Alert 9 is a halogen atom bonded to a sp3 carbon. In

this structural moiety, the halogen atoms are facile leav-
ing groups in SN2 reactions and, therefore, this alert sig-
nifies a relatively high chemical reactivity. Twenty-one
compounds matching this structural alert were found in
the hepatotoxic class, 7 in the nonhepatotoxic class, and
23 in the possible hepatotoxic class, giving rise to a
p-value of 3.9 × 10− 2.
Alert 10 matches a relatively small number of com-

pounds in the expanded LiverTox dataset: 4 in the hep-
atotoxic class, 4 in the possible hepatotoxic class, and
zero in the nonhepatotoxic class. The alert has a rela-
tively high p-value of 0.11, partly as a result of a rela-
tively small number of drugs (8) having this structural
moiety.
Alert 11 is a para oxygen and nitrogen di-substituted

benzene ring. It is known to form a quinoid structure
upon bioactivation by liver enzymes, which may contrib-
ute to the potential hepatotoxic liability associated with
the structural moiety. In the expanded LiverTox dataset,
5 drugs with this structural moiety were found in the
hepatotoxic class, 4 in the possible hepatotoxic class,
and only 1 was found in the nonhepatotoxic class.
Alert 12 is a fused tricyclic structural moiety found in

some central nervous system drugs. Five drugs with this
alert were in the hepatotoxic class, 2 in the possible hep-
atotoxic class, and 1 in the nonhepatotoxic class. Al-
though the number of drugs with this structural moiety
is relatively low, and the drugs distribute across all three
classes, it is known that these drugs can induce acute
intrahepatic cholestasis, steatosis, or hepatitis [21]. Pro-
posed mechanisms of liver toxicity induced by these
drugs include dissipation of the mitochondrial trans-
membrane potential and the inhibition of the electron
transport chain [22,23].
In addition to the structural alerts described above, we

also performed substructure searches using other struc-
tural alerts published in the literature [11,13]. However,
some of the structural alerts were found in very few
drugs in the expanded LiverTox dataset or were not
present at all. They may be structural moieties associ-
ated with very high levels of toxicity, so that most com-
pounds with these alerts failed to reach the market; or
the moieties are not drug-like enough and therefore have
a lower chance to become part of a drug. In either case,

there were insufficient data in the expanded LiverTox
dataset to evaluate these alerts.

Conclusions
In summary, widespread use of structural alerts in drug
discovery programs has inspired publication of thou-
sands of structural alerts. Many of them have not been
thoroughly validated with relevant data. Strict applica-
tion of these alerts to remove compounds from bioactiv-
ity screening libraries and lists of drug development
candidates may significantly lower the productivity of
new drug discovery. To prevent this from happening, we
propose to develop/validate structural alerts from rele-
vant data with vigorous statistical analysis. As an ex-
ample, we retrieved drug-induced human liver injury
data from the recently launched LiverTox database and
performed statistical analyses to identify structural moi-
eties strongly associated with human liver injuries. A
total of 12 such structural moieties were identified, and
they can be used as human hepatotoxicity structural
alerts to filter compound libraries and prioritize/profile
drug candidates.

Methods
We retrieved human liver ADR information for all
entries in LiverTox in March 2014 via web access at
http://livertox.nih.gov/. We then removed entries without
chemical structures, such as some herbal extracts and vac-
cines. This gave us a list of 577 compounds. Each com-
pound was annotated with a summary statement of
reported human liver injuries, severity of the injuries, and
a qualitative description of reporting frequencies. How-
ever, LiverTox does not include a categorical statement on
whether a compound is hepatotoxic.
To classify the compounds into hepatotoxic and non-

hepatotoxic groups, we initially followed the Drug-
Induced Liver Injury Network’s five-point categorization
of the likelihood that a medication is associated with
drug-induced liver injuries [24]. The categories are de-
scribed below.
Category A: The drug is well-known, well described,

and frequently reported to cause either direct or idiosyn-
cratic liver injury, and it has a characteristic signature;
more than 50 cases, including case series, have been
described.
Category B: The drug is reported and known to cause

idiosyncratic liver injury and has a characteristic signa-
ture; between 12 and 50 cases, including small case
series, have been described.
Category C: The drug is probably linked to idiosyn-

cratic liver injury but has been reported infrequently,
and no characteristic signature has been identified; the
number of identified cases is less than 12, without a sig-
nificant case series.
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Category D: Single case reports have appeared impli-
cating the drug, but fewer than three cases have been
reported in the literature; no characteristic signature has
been identified, and the case reports may not have been
very convincing. Thus, these drugs can only be said to
be possible hepatotoxins.
Category E: Despite extensive use, there is no evidence

that the drug has caused liver injury. Single case reports
may have been published, but they were largely uncon-
vincing. These drugs are not believed to cause liver
injury.
Category X: For drugs recently introduced or rarely

used in clinical medicine, there may be inadequate infor-
mation to place it in any of the five categories. Thus, this
category is characterized as “unknown”.
Because counts of drug-induced liver injury reports

were unavailable in LiverTox, we then implemented a
slightly modified categorization scheme that does not
rely on counting reports. We combined categories A
and B into a hepatotoxic class; categories C, D, and X
into a possible hepatotoxic class; and we left category E
as a nonhepatotoxic class. That is, any compound de-
scribed as a well-known cause, a cause, or a rare cause
of clinically apparent acute human liver injuries was
classified as hepatotoxic. We also classified as hepato-
toxic some compounds that might have a lower count of
liver injury reports but were associated with very severe
and fatal liver injuries, because even a very small number
of drug-induced liver injury cases that result in fatalities
may trigger a mandatory withdrawal or a black-box
warning label. In the end, we classified 150 compounds
as hepatotoxic, 185 as nonhepatotoxic, and 242 as pos-
sible hepatotoxic.
As a valuable information resource for liver ADRs of

current prescription and over-the-counter drugs, Liver-
Tox does not contain information about some drugs that
were withdrawn from the market due to drug-induced
liver toxicity. Twenty-five such drugs were cited by
Kalgutkar [4] and Stepan et al. [14]. We included them
in the hepatotoxic class. In addition, Stepan et al. cited
some drugs with black-box warning labels for their
hepatotoxicity liability, and three of them were not in
LiverTox. We also included the three drugs in the hep-
atotoxic class. Our final dataset has 178 hepatotoxic
compounds, 185 nonhepatotoxic compounds, and 242
compounds with possible hepatotoxic. We call this data-
set the expanded LiverTox dataset, and it is provided as
supporting information.
We next performed substructure searches using previ-

ously proposed structural alerts for reactive, unstable,
and toxic compounds [11-13] as queries. The substruc-
ture searches identified occurrence of these alerts in the
compounds of the three hepatotoxicity classes. We then
performed statistical analyses to evaluate the probability

of the occurrence patterns of the alerts in the three hep-
atotoxicity classes by chance. Only patterns with a very
low probability of chance occurrence (i.e., a low p-value)
were considered evidence for valid hepatotoxicity struc-
tural alerts.
We calculated the p-values for the mutual information

(MI) [25] between two classifications for each structural
alert. The first classification divided the drugs into three
groups: hepatotoxic, nonhepatotoxic, and possible hep-
atotoxic. The second classification divided the drugs into
two groups: those that contained the structural alert and
those that did not. Thus, we constructed a 2 × 3 matrix
for each structural alert and computed the MI of this
matrix. We performed 10,000 simulations by randomly
distributing the drugs in the 2 × 3 matrix without changing
the sums of each row or column and counted the fraction
of generated matrices having MI values larger than or
equal to those observed in the expanded LiverTox dataset.
We used this fraction as the p-value for observing struc-
tural alerts of our three classification categories compared
with random observations. We chose to run 10,000 simu-
lations to ensure sufficient statistical reliability of the cal-
culated p-values, as this choice allowed us to calculate
p-values down to a lower limit of 0.0001 (1/10,000).

Additional file

Additional file 1: Expanded LiverTox dataset comprising 178
hepatotoxic, 185 nonhepatotoxic, and 242 possible hepatotoxic
compounds.
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